51 research outputs found

    Circadian and dark-pulse activation of orexin/hypocretin neurons

    Get PDF
    Temporal control of brain and behavioral states emerges as a consequence of the interaction between circadian and homeostatic neural circuits. This interaction permits the daily rhythm of sleep and wake, regulated in parallel by circadian cues originating from the suprachiasmatic nuclei (SCN) and arousal-promoting signals arising from the orexin-containing neurons in the tuberal hypothalamus (TH). Intriguingly, the SCN circadian clock can be reset by arousal-promoting stimuli while activation of orexin/hypocretin neurons is believed to be under circadian control, suggesting the existence of a reciprocal relationship. Unfortunately, since orexin neurons are themselves activated by locomotor promoting cues, it is unclear how these two systems interact to regulate behavioral rhythms. Here mice were placed in conditions of constant light, which suppressed locomotor activity, but also revealed a highly pronounced circadian pattern in orexin neuronal activation. Significantly, activation of orexin neurons in the medial and lateral TH occurred prior to the onset of sustained wheel-running activity. Moreover, exposure to a 6 h dark pulse during the subjective day, a stimulus that promotes arousal and phase advances behavioral rhythms, activated neurons in the medial and lateral TH including those containing orexin. Concurrently, this stimulus suppressed SCN activity while activating cells in the median raphe. In contrast, dark pulse exposure during the subjective night did not reset SCN-controlled behavioral rhythms and caused a transient suppression of neuronal activation in the TH. Collectively these results demonstrate, for the first time, pronounced circadian control of orexin neuron activation and implicate recruitment of orexin cells in dark pulse resetting of the SCN circadian clock

    Schizophrenia-associated variation at <i>ZNF804A</i> correlates with altered experience-dependent dynamics of sleep slow waves and spindles in healthy young adults

    Get PDF
    The rs1344706 polymorphism in ZNF804A is robustly associated with schizophrenia and schizophrenia is, in turn, associated with abnormal non-rapid eye movement (NREM) sleep neurophysiology. To examine whether rs1344706 is associated with intermediate neurophysiological traits in the absence of disease, we assessed the relationship between genotype, sleep neurophysiology, and sleep-dependent memory consolidation in healthy participants. We recruited healthy adult males with no history of psychiatric disorder from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Participants were homozygous for either the schizophrenia-associated 'A' allele (N = 22) or the alternative 'C' allele (N = 18) at rs1344706. Actigraphy, polysomnography (PSG) and a motor sequence task (MST) were used to characterize daily activity patterns, sleep neurophysiology and sleep-dependent memory consolidation. Average MST learning and sleep-dependent performance improvements were similar across genotype groups, albeit more variable in the AA group. During sleep after learning, CC participants showed increased slow-wave (SW) and spindle amplitudes, plus augmented coupling of SW activity across recording electrodes. SW and spindles in those with the AA genotype were insensitive to learning, whilst SW coherence decreased following MST training. Accordingly, NREM neurophysiology robustly predicted the degree of overnight motor memory consolidation in CC carriers, but not in AA carriers. We describe evidence that rs1344706 polymorphism in ZNF804A is associated with changes in the coordinated neural network activity that supports offline information processing during sleep in a healthy population. These findings highlight the utility of sleep neurophysiology in mapping the impacts of schizophrenia-associated common genetic variants on neural circuit oscillations and function

    Sleep EEG in young people with 22q11.2 deletion syndrome:a cross-sectional study of slow-waves, spindles and correlations with memory and neurodevelopmental symptoms

    Get PDF
    Background:: Young people living with 22q11.2 Deletion Syndrome (22q11.2DS) are at increased risk of schizophrenia, intellectual disability, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In common with these conditions, 22q11.2DS is also associated with sleep problems. We investigated whether abnormal sleep or sleep-dependent network activity in 22q11.2DS reflects convergent, early signatures of neural circuit disruption also evident in associated neurodevelopmental conditions. Methods:: In a cross-sectional design, we recorded high-density sleep EEG in young people (6–20 years) with 22q11.2DS (n=28) and their unaffected siblings (n=17), quantifying associations between sleep architecture, EEG oscillations (spindles and slow waves) and psychiatric symptoms. We also measured performance on a memory task before and after sleep. Results:: 22q11.2DS was associated with significant alterations in sleep architecture, including a greater proportion of N3 sleep and lower proportions of N1 and REM sleep than in siblings. During sleep, deletion carriers showed broadband increases in EEG power with increased slow-wave and spindle amplitudes, increased spindle frequency and density, and stronger coupling between spindles and slow-waves. Spindle and slow-wave amplitudes correlated positively with overnight memory in controls, but negatively in 22q11.2DS. Mediation analyses indicated that genotype effects on anxiety, ADHD and ASD were partially mediated by sleep EEG measures. Conclusions:: This study provides a detailed description of sleep neurophysiology in 22q11.2DS, highlighting alterations in EEG signatures of sleep which have been previously linked to neurodevelopment, some of which were associated with psychiatric symptoms. Sleep EEG features may therefore reflect delayed or compromised neurodevelopmental processes in 22q11.2DS, which could inform our understanding of the neurobiology of this condition and be biomarkers for neuropsychiatric disorders. Funding:: This research was funded by a Lilly Innovation Fellowship Award (UB), the National Institute of Mental Health (NIMH 5UO1MH101724; MvdB), a Wellcome Trust Institutional Strategic Support Fund (ISSF) award (MvdB), the Waterloo Foundation (918-1234; MvdB), the Baily Thomas Charitable Fund (2315/1; MvdB), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment (IMAGINE) (MR/L011166/1; JH, MvdB and MO), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment 2 (IMAGINE-2) (MR/T033045/1; MvdB, JH and MO); Wellcome Trust Strategic Award ‘Defining Endophenotypes From Integrated Neurosciences’ Wellcome Trust (100202/Z/12/Z MO, JH). NAD was supported by a National Institute for Health Research Academic Clinical Fellowship in Mental Health and MWJ by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science (202810/Z/16/Z). CE and HAM were supported by Medical Research Council Doctoral Training Grants (C.B.E. 1644194, H.A.M MR/K501347/1). HMM and UB were employed by Eli Lilly & Co during the study; HMM is currently an employee of Boehringer Ingelheim Pharma GmbH & Co KG. The views and opinions expressed are those of the author(s), and not necessarily those of the NHS, the NIHR or the Department of Health funders

    The molecular phenotype of human cardiac myosin associated with hypertrophic obstructive cardiomyopathy

    Get PDF
    AIM: The aim of the study was to compare the functional and structural properties of the motor protein, myosin, and isolated myocyte contractility in heart muscle excised from hypertrophic cardiomyopathy patients by surgical myectomy with explanted failing heart and non-failing donor heart muscle. METHODS: Myosin was isolated and studied using an in vitro motility assay. The distribution of myosin light chain-1 isoforms was measured by two-dimensional electrophoresis. Myosin light chain-2 phosphorylation was measured by sodium dodecyl sulphate-polyacrylamide gel electrophoresis using Pro-Q Diamond phosphoprotein stain. RESULTS: The fraction of actin filaments moving when powered by myectomy myosin was 21% less than with donor myosin (P = 0.006), whereas the sliding speed was not different (0.310 +/- 0.034 for myectomy myosin vs. 0.305 +/- 0.019 microm/s for donor myosin in six paired experiments). Failing heart myosin showed 18% reduced motility. One myectomy myosin sample produced a consistently higher sliding speed than donor heart myosin and was identified with a disease-causing heavy chain mutation (V606M). In myectomy myosin, the level of atrial light chain-1 relative to ventricular light chain-1 was 20 +/- 5% compared with 11 +/- 5% in donor heart myosin and the level of myosin light chain-2 phosphorylation was decreased by 30-45%. Isolated cardiomyocytes showed reduced contraction amplitude (1.61 +/- 0.25 vs. 3.58 +/- 0.40%) and reduced relaxation rates compared with donor myocytes (TT(50%) = 0.32 +/- 0.09 vs. 0.17 +/- 0.02 s). CONCLUSION: Contractility in myectomy samples resembles the hypocontractile phenotype found in end-stage failing heart muscle irrespective of the primary stimulus, and this phenotype is not a direct effect of the hypertrophy-inducing mutation. The presence of a myosin heavy chain mutation causing hypertrophic cardiomyopathy can be predicted from a simple functional assay

    Effects of asenapine, olanzapine, and risperidone on psychotomimetic-induced reversal-learning deficits in the rat

    Get PDF
    YesBackground: Asenapine is a new pharmacological agent for the acute treatment of schizophrenia and bipolar disorder. It has relatively higher affinity for serotonergic and α2-adrenergic than dopaminergic D2 receptors. We evaluated the effects of asenapine, risperidone, and olanzapine on acute and subchronic psychotomimetic-induced disruption of cued reversal learning in rats. Methods: After operant training, rats were treated acutely with D-amphetamine (0.75 mg/kg intraperitoneally [i.p.]) or phencyclidine (PCP; 1.5 mg/kg i.p.) or sub-chronically with PCP (2 mg/kg i.p. for 7 days). We assessed the effects of acute coadministration of asenapine, risperidone, or olanzapine on acute D-amphetamine– and PCP-induced deficits and the effects of long-term coadministration of these agents (for 28 additional days) on the deficits induced by subchronic PCP. Results: Deficits in reversal learning induced by acute D-amphetamine were attenuated by risperidone (0.2 mg/kg i.p.). Acute PCP-induced impairment of reversal learning was attenuated by acute asenapine (0.025 mg/kg subcutaneously [s.c.]), risperidone (0.2 mg/kg i.p.), and olanzapine (1.0 mg/kg i.p.). Subchronic PCP administration induced an enduring deficit that was attenuated by acute asenapine (0.075 mg/kg s.c.) and by olanzapine (1.5 mg/kg i.p.). Asenapine (0.075 mg/kg s.c.), risperidone (0.2 mg/kg i.p.), and olanzapine (1.0 mg/kg i.p.) all showed sustained efficacy with chronic (29 d) treatment to improve subchronic PCP-induced impairments. Conclusion: These data suggest that asenapine may have beneficial effects in the treatment of cognitive symptoms in schizophrenia. However, this remains to be validated by further clinical evaluation.This research was supported by Schering-Plough Corporation, now Merck & Co., Inc. and Pfizer Inc

    Relationships between social withdrawal and facial emotion recognition in neuropsychiatric disorders

    Get PDF
    Background: Emotion recognition constitutes a pivotal process of social cognition. It involves decoding social cues (e.g., facial expressions) to maximise social adjustment. Current theoretical models posit the relationship between social withdrawal factors (social disengagement, lack of social interactions and loneliness) and emotion decoding. Objective: To investigate the role of social withdrawal in patients with schizophrenia (SZ) or probable Alzheimer's disease (AD), neuropsychiatric conditions associated with social dysfunction. Methods: A sample of 156 participants was recruited: schizophrenia patients (SZ; n = 53), Alzheimer's disease patients (AD; n = 46), and two age-matched control groups (SZc, n = 29; ADc, n = 28). All participants provided self-report measures of loneliness and social functioning, and completed a facial emotion detection task. Results: Neuropsychiatric patients (both groups) showed poorer performance in detecting both positive and negative emotions compared with their healthy counterparts (p < .01). Social withdrawal was associated with higher accuracy in negative emotion detection, across all groups. Additionally, neuropsychiatric patients with higher social withdrawal showed lower positive emotion misclassification. Conclusions: Our findings help to detail the similarities and differences in social function and facial emotion recognition in two disorders rarely studied in parallel, AD and SZ. Transdiagnostic patterns in these results suggest that social withdrawal is associated with heightened sensitivity to negative emotion expressions, potentially reflecting hypervigilance to social threat. Across the neuropsychiatric groups specifically, this hypervigilance associated with social withdrawal extended to positive emotion expressions, an emotional-cognitive bias that may impact social functioning in people with severe mental illness

    The 5-Choice Continuous Performance Test: Evidence for a Translational Test of Vigilance for Mice

    Get PDF
    Attentional dysfunction is related to functional disability in patients with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and Alzheimer's disease. Indeed, sustained attention/vigilance is among the leading targets for new medications designed to improve cognition in schizophrenia. Although vigilance is assessed frequently using the continuous performance test (CPT) in humans, few tests specifically assess vigilance in rodents.We describe the 5-choice CPT (5C-CPT), an elaboration of the 5-choice serial reaction (5CSR) task that includes non-signal trials, thus mimicking task parameters of human CPTs that use signal and non-signal events to assess vigilance. The performances of C57BL/6J and DBA/2J mice were assessed in the 5C-CPT to determine whether this task could differentiate between strains. C57BL/6J mice were also trained in the 5CSR task and a simple reaction-time (RT) task involving only one choice (1CRT task). We hypothesized that: 1) C57BL/6J performance would be superior to DBA/2J mice in the 5C-CPT as measured by the sensitivity index measure from signal detection theory; 2) a vigilance decrement would be observed in both strains; and 3) RTs would increase across tasks with increased attentional load (1CRT task<5CSR task<5C-CPT).C57BL/6J mice exhibited superior SI levels compared to DBA/2J mice, but with no difference in accuracy. A vigilance decrement was observed in both strains, which was more pronounced in DBA/2J mice and unaffected by response bias. Finally, we observed increased RTs with increased attentional load, such that 1CRT task<5CSR task<5C-CPT, consistent with human performance in simple RT, choice RT, and CPT tasks. Thus we have demonstrated construct validity for the 5C-CPT as a measure of vigilance that is analogous to human CPT studies

    Asenapine effects in animal models of psychosis and cognitive function

    Get PDF
    Asenapine, a novel psychopharmacologic agent in the development for schizophrenia and bipolar disorder, has high affinity for serotonergic, α-adrenergic, and dopaminergic receptors, suggesting potential for antipsychotic and cognitive-enhancing properties. The effects of asenapine in rat models of antipsychotic efficacy and cognition were examined and compared with those of olanzapine and risperidone. Amphetamine-stimulated locomotor activity (Amp-LMA; 1.0 or 3.0 mg/kg s.c.) and apomorphine-disrupted prepulse inhibition (Apo-PPI; 0.5 mg/kg s.c.) were used as tests for antipsychotic activity. Delayed non-match to place (DNMTP) and five-choice serial reaction (5-CSR) tasks were used to assess short-term spatial memory and attention, respectively. Asenapine doses varied across tasks: Amp-LMA (0.01–0.3 mg/kg s.c.), Apo-PPI (0.001–0.3 mg/kg s.c.), DNMTP (0.01–0.1 mg/kg s.c.), and 5-CSR (0.003–0.3 mg/kg s.c.). Asenapine was highly potent (active at 0.03 mg/kg) in the Amp-LMA and Apo-PPI assays. DNMTP or 5-CSR performance was not improved by asenapine, olanzapine, or risperidone. All agents (P &lt; 0.01) reduced DNMTP accuracy at short delays; post hoc analyses revealed that only 0.1 mg/kg asenapine and 0.3 mg/kg risperidone differed from vehicle. All active agents (asenapine, 0.3 mg/kg; olanzapine, 0.03–0.3 mg/kg; and risperidone, 0.01–0.1 mg/kg) significantly impaired 5-CSR accuracy (P &lt; 0.05). Asenapine has potent antidopaminergic properties that are predictive of antipsychotic efficacy. Asenapine, like risperidone and olanzapine, did not improve cognition in normal rats. Rather, at doses greater than those required for antipsychotic activity, asenapine impaired cognitive performance due to disturbance of motor function, an effect also observed with olanzapine and risperidone

    Ecology and Transmission of Buruli Ulcer Disease: A Systematic Review

    Get PDF
    Buruli ulcer is a neglected emerging disease that has recently been reported in some countries as the second most frequent mycobacterial disease in humans after tuberculosis. Cases have been reported from at least 32 countries in Africa (mainly west), Australia, Southeast Asia, China, Central and South America, and the Western Pacific. Large lesions often result in scarring, contractual deformities, amputations, and disabilities, and in Africa, most cases of the disease occur in children between the ages of 4–15 years. This environmental mycobacterium, Mycobacterium ulcerans, is found in communities associated with rivers, swamps, wetlands, and human-linked changes in the aquatic environment, particularly those created as a result of environmental disturbance such as deforestation, dam construction, and agriculture. Buruli ulcer disease is often referred to as the “mysterious disease” because the mode of transmission remains unclear, although several hypotheses have been proposed. The above review reveals that various routes of transmission may occur, varying amongst epidemiological setting and geographic region, and that there may be some role for living agents as reservoirs and as vectors of M. ulcerans, in particular aquatic insects, adult mosquitoes or other biting arthropods. We discuss traditional and non-traditional methods for indicting the roles of living agents as biologically significant reservoirs and/or vectors of pathogens, and suggest an intellectual framework for establishing criteria for transmission. The application of these criteria to the transmission of M. ulcerans presents a significant challenge
    corecore